

Tetrahedron Letters 41 (2000) 659-662

TETRAHEDRON LETTERS

Reaction of 5,6-cyclic sulfates derived from glycofuranoses with bases. A one-pot synthesis of 6-deoxy-hexofuranos-5-ulose derivatives

Thierry Gourlain, Anne Wadouachi* and Daniel Beaupère

Laboratoire de Chimie Organique, Université de Picardie Jules Verne, 33 rue Saint-Leu 80039 Amiens, France

Received 16 September 1999; accepted 12 November 1999

Abstract

Methyl 2,3-*O*-isopropylidene-5,6-*O*-sulfuryl- α -D-mannofuranoside **1** reacted with nitrogen bases to give the corresponding aminosulfates. Strong bases such as sodium *tert*-butoxide or *n*-butyllithium afforded methyl 6-deoxy-2,3-*O*-isopropylidene- α -D-*lyxo*-hexofuranos-5-uloside **7**. The reaction was optimized with sodium *tert*-butoxide and applied to three other 5,6-cyclic sulfates derived from aldofuranosides to give the corresponding keto-aldoses in good yields. © 2000 Published by Elsevier Science Ltd. All rights reserved.

The cyclic sulfates of *vic*-diols are well known and have been used as electrophiles in a variety of nucleophilic displacement reactions.¹ Such sulfates are obtained by catalytic oxidation of cyclic sulfites with ruthenium trichloride and sodium periodate.²

We have already reported the regioselective synthesis of 6-*O*-alkyl and 6-alkynyl-6-deoxy compounds via a 5,6-cyclic sulfate derived from mannofuranose. This method has been extended to pseudo-di or trisaccharides and pseudo-*C*-disaccharides.^{3–5}

More recently, it has been shown that 1,2-O-sulfuryldecane failed to generate C–C bonds with some carbon nucleophiles. For example, 1,2-O-sulfuryldecane reacted with *n*-butyllithium to give, unexpectedly, dodecanal in 99% yield.⁶

We herein report on the reactivity of 5,6-cyclic sulfates of glycofuranoses towards various organic and inorganic bases.

The results of the reaction of methyl 2,3-*O*-isopropylidene-5,6-*O*-sulfuryl- α -D-mannofuranoside 1^3 with bases are illustrated in Table 1.

As expected, the use of weak bases such as pyridine (entry 1), triethylamine (entry 2) or DBU (entry 3), gave the corresponding aminosulfates 2^7 , 3^8 and 4^9 in quantitative yields. Similarly, reactions with strong nitrogen bases such as sodium amide (entry 5) and LDA (entry 6) with the 5,6-cyclic sulfate 1 also gave the expected substitution products 5^{10} and $6^{,11}$ respectively (Scheme 1).

^{*} Corresponding author. Fax: +33 3 22 82 75 61; e-mail: anne.wadouachi@sc.u-picardie.fr (A. Wadouachi)

^{0040-4039/00/\$ -} see front matter © 2000 Published by Elsevier Science Ltd. All rights reserved. *P1I:* S0040-4039(99)02158-9

Entry	Base (or nucleophile)	Reaction time	Temperature	Yield %	Product
	1.5 eq.				
1	C ₅ H ₅ N	overnight	rt	95	2
2	Et ₃ N	overnight	rt	95	3
3	DBU	overnight	rt	92	4
4	(CH ₃) ₃ COK	25 min	0° C then rt	79	7
5	$NaNH_2$	overnight	rt	70	5
6	(iPr) ₂ NLi	1 h	- 40° C	92	6
7	<i>n</i> -BuLi	20 min	- 40° C then rt	40	7
8	tert-BuLi	10 min	- 40° C	-	complex mixture
9	NaH	16 h	rt then 70°C	-	complex mixture

 Table 1

 Reaction of the cyclic sulfate derivative 1 with basic reagents

In contrast, reaction of the 5,6-cyclic sulfate **1** with *n*-butyllithium (entry 7) followed by acidic hydrolysis gave the ketone compound methyl 6-deoxy-2,3-O-isopropylidene- α -D-*lyxo*-hexofuranos-5-uloside **7**^{12,13} in 40% yield and no substitution product was detected (Scheme 2). Some degradation of the 5,6-cyclic sulfate **1** was observed which could explain the relatively low yield of **7**.

The optimum yield (79%) obtained for the methyl hexofuranos-5-uloside compound **7** was when **1** reacted with sodium *tert*-butoxide (entry 4, Scheme 2). It was found that treatment with stronger bases such as NaH and *tert*-BuLi resulted in degradation of **1** (Table 1). A mechanism for the formation of **7** is given in Scheme 3.

Scheme 3.

It is proposed that base catalyses elimination and generates the olefin **1a** which hydrolyses to the ketone **7**.

The generality of this reaction was exemplified by treatment of sodium *tert*-butoxide with the related substrates 8,⁴ 10^{14} and 12^{15} to give the ketones 9^{16} (77%), 11^{17} (73%) and 13^{18} (72%), respectively (Table 2).

 Table 2

 Reaction of 5,6-cyclic sulfate glycofuranoses with sodium *tert*-butoxide

In conclusion, we described a one-pot synthesis of manno, gluco and galactofurano-5-ulose derivatives in 72–79% yields by treatment of corresponding 5,6-*O*-sulfuryl compounds with sodium *tert*-butoxide. It is envisaged that 5,6-deoxy-5-oxo derivatives are potential precursors of aminosugars and cyclitols.

References

- 1. Lohray, B. B. Synthesis 1992, 1035.
- (a) Sharpless, K. B.; Kim, B. M. Tetrahedron Lett. 1989, 30, 655. (b) Sharpless, K. B.; Gao, Y.; Lohray, B. B. Tetrahedron Lett. 1989, 30, 2623.
- 3. Gourlain, T.; Wadouachi, A.; Meslouti, A. E.; Uzan, R.; Beaupère, D. Carbohydr. Lett. 1996, 2, 143.
- 4. Gourlain, T.; Wadouachi, A.; Uzan, R.; Beaupère, D. J. Carbohydr. Chem. 1997, 16, 1089.
- 5. Gourlain, T.; Wadouachi, A. R.; Beaupère, D. Synthesis 1999, 290.
- 6. Hoye, T. R.; Crawford, K. B. J. Org. Chem. 1994, 59, 520.
- 7. Data for **2**: ¹³C NMR (CDCl₃) δ 148.9 (C-4'), 147.9 (C-2', C-6'), 130.4 (C-3', C-5'), 116.1 (C(CH₃)₂), 109.1 (C-1), 86.3 (C-2), 81.4 (C-3), 81.1 (C-4), 77.0 (C-5), 62.7 (C-6), 56.6 (OCH₃), 27.1, 25.7 (C(CH₃)₂).
- 8. Data for **3**: ¹³C NMR (CDCl₃) δ 112.3 (C(CH₃)₂), 106.5 (C-1), 84.1 (C-2), 81.2 (C-3), 79.7 (C-4), 68.8 (C-5), 56.3 (C-6), 54.3 (OCH₃), 53.7 (3 CH₂), 25.4, 23.4 (C(CH₃)₂), 7.1 (3 CH₃).
- 9. Data for **4**: ¹³C NMR (CDCl₃) δ 170.1 (C-10'), 115.9 (C(CH₃)₂), 108.7 (C-1), 86.1 (C-2), 82.3 (C-3), 81.8 (C-4), 77.1 (C-5), 57.4 (CH₂), 57.1 (OCH₃), 55.9 (CH₂), 51.4 (C-6), 50.7 (C-9'), 30.5 (2 CH₂), 27.6 (CH₂), 27.1, 25.5 (C(CH₃)₂), 24.8, 21.7 (CH₂).
- 10. Data for **5**: ¹³C NMR (D₂O) δ 115.3 (C(CH₃)₂), 108.8 (C-1), 86.4 (C-2), 82.9 (C-3), 82.2 (C-4), 76.1 (C-5), 56.9 (OCH₃), 51.7 (C-6), 27.7, 26.3 (C(CH₃)₂).
- 11. Data for **6**: ¹³C NMR (CDCl₃) δ 112.4 (C(CH₃)₂), 106.8 (C-1), 84.3 (C-2), 80.1 (C-3), 79.7 (C-4), 69.9 (C-5), 59.7 (C-6), 54.8 (OCH₃), 44.8 (2 CH), 25.7 (C(CH₃)₂), 23.8 (C(CH₃)₂, 4 CH₃).
- 12. Data for **7**: IR: C=O (1719 cm⁻¹); ¹H NMR (CDCl₃) δ 4.98 (s, 1H, H-1, $J_{1,2}$ 0), 4.94 (dd, 1H, H-3, $J_{2,3}$ 5.8, $J_{3,4}$ 4.1), 4.50 (d, 1H, H-2), 4.37 (d, 1H, H-4), 3.28 (s, 3H, OCH₃), 2.19 (s, 3H, H-6a,b,c), 1.35 (s, 3H, C(CH₃)₂), 1.21 (s, 3H, C(CH₃)₂); ¹³C NMR (CDCl₃) δ 204.2 (C-5), 113.0 (C(CH₃)₂), 107.4 (C-1), 84.8 (C-4), 84.2 (C-2), 80.7 (C-3), 54.8 (OCH₃), 27.7 (C-6), 25.7, 24.5 (C(CH₃)₂).
- 13. Gourlain, T.; Wadouachi, A.; Beaupère, D. Carbohydr. Res. 1999, 324, 66.
- 14. Calvo-Flores, F. G.; Garcia-Mendoza, P.; Hernandez-Mateo, F.; Isac-Garcia, J.; Santoyo-Gonzalez, F. J. Org. Chem. 1997, 62, 3944.
- 15. Data for **12**: ¹H NMR (CDCl₃) δ 7.38–7.30 (m, 5H, CH(Ph)), 5.84 (d, 1H, H-1, $J_{1,2}$ 3.8), 4.99 (m, 1H, H-5), 4.69 (d, 1H, CH₂(Bn)), 4.65 (d, 1H, H-2), 4.54–4.43 (m, 3H, CH₂(Bn), H-6, H-6'), 4.06 (t, 1H, H-4, $J_{3,4}$ 5.1, $J_{4,5}$ 5.1), 3.92 (d, 1H, H-3), 1.52 (s, 3H, C(CH₃)₂), 1.35 (s, 3H, C(CH₃)₂); ¹³C NMR (CDCl₃) δ 136.3 (C_{*ipso*}), 128.7, 128.4, 128.1 (CH(Ph)), 114.6 (C(CH₃)₂), 105.3 (C-1), 84.8 (C-2), 81.5 (C-3), 81.1 (C-4), 79.9 (C-5), 72.3 (CH₂(Bn)), 68.9 (C-6), 27.4, 26.7 (C(CH₃)₂).
- 16. Data for 9: IR: C=O (1721 cm⁻¹); ¹H NMR (CDCl₃) δ 7.28 (m, 5H, CH(Ph)), 5.17 (s, 1H, H-1, J_{1,2} 0), 4.99 (dd, 1H, H-3, J_{2,3} 5.7, J_{3,4} 4.2), 4.65 (t, 2H, CH₂(Bn)), 4.48 (d, 1H, H-2), 4.45 (d, 1H, H-4), 2.22 (s, 3H, H-6a,b,c), 1.38 (s, 3H, C(CH₃)₂), 1.23 (s, 3H, C(CH₃)₂); ¹³C NMR (CDCl₃) δ 204.1 (C-5), 136.9 (C_{ipso}), 128.4, 127.9 (CH(Ph)), 113.0 (C(CH₃)₂), 105.6 (C-1), 85.3 (C-4), 84.3 (C-2), 80.7 (C-3), 69.1 (CH₂(Bn)), 27.8 (C-6), 25.7, 24.5 (C(CH₃)₂).
- 17. Data for **11**: IR: C=O (1722 cm⁻¹); ¹H NMR (CDCl₃) δ 7.32–7.18 (m, 5H, CH(Ph)), 6.04 (d, 1H, H-1, $J_{1,2}$ 3.5), 4.60–4.53 (m, 3H, H-3, H-4, CH(Bn)), 4.43 (d, 1H, CH₂(Bn)), 4.23 (d, 1H, H-3, $J_{3,4}$ 3.6), 2.18 (s, 3H, H-6a,b,c), 1.43 (s, 3H, C(CH₃)₂), 1.28 (s, 3H, C(CH₃)₂); ¹³C NMR (CDCl₃) δ 206.6 (C-5), 136.8 (C_{*ipso*}), 128.4, 127.9 (CH(Ph)), 112.2 (C(CH₃)₂), 105.8 (C-1), 85.4 (C-2), 83.6 (C-3), 81.7 (C-4), 72.3 (CH₂(Bn)), 29.6 (C-6), 26.8, 26.2 (C(CH₃)₂).
- 18. Data for **13**: IR: C=O (1718 cm⁻¹); ¹H NMR (CDCl₃) δ 7.27 (m, 5H, CH(Ph)), 5.97 (d, 1H, H-1, $J_{1,2}$ 3.8), 4.59–4.53 (m, 3H, H-2, CH(Bn)), 4.43 (s, 2H, H-3, H-4), 2.27 (s, 3H, H-6a,b,c), 1.35 (s, 3H, C(CH₃)₂), 1.24 (s, 3H, C(CH₃)₂); ¹³C NMR (CDCl₃) δ 207.2 (C-5), 137.0 (C_{ipso}), 128.4, 127.9, 127.7 (CH(Ph)), 112.0 (C(CH₃)₂), 106.3 (C-1), 89.7 (C-4), 83.6 (C-2, C-3), 71.8 (CH₂(Bn)), 29.6 (C-6), 25.7, 25.6 (C(CH₃)₂).